Educational Producer For Your Success

편저자 : 안창호

※ 정오 및 오탈자를 수정합니다. 앞으로 더욱더 좋은 양서를 만들 수 있도록 꾸준히 노력할 것을 약속드립니다. 감시합니다.

Page 위치	전	후
23 PAGE	17. ③	17. 4
17번 정답 수정		
45 PAGE	04. ③	04. ④
4번 정답 수정		① 0.5몰 ② $\frac{23}{30}$ 몰=0.76몰
해설추가		③ 1몰 ④ $\frac{1}{3}$ 물=0.33물
45 PAGE 5번 문항 수정, 정답 수정, 해설추가	05. 다음 중 몰 수가 가장 작은 것은?(단, C: 12.0g/mol, N: 14.0g/mol, O: 16.0g/mol, Fe: 56.0g/mol) 13년 국가직 7급 ① 3.0 × 10 ²³ 개의 CO 분자 ② 28.0g의 Fe ③ 40.0g의 Fe₂O₃ ④ 23.0g의 NO₂ 05. ①	05. 다음 중 몰 수가 가장 작은 것은?(단, C: 12.0g/mol, N: 14.0g/mol, O: 16.0g/mol, Fe: 56.0g/mol) 13년 국가직 7급 ① 3.0 × 10²²개의 CO 분자 ② 28.0g의 Fe ③ 40.0g의 Fe₂O₃ ④ 23.0g의 NO₂ 05. ③ ① 0.5물 ② 0.5물 ③ 0.5물 ② 3.25물 ② 23.25星
40.04.05		④ $\frac{23}{46}$ 몰= 0.5몰
49 PAGE 25번 해설 추가		$\frac{a}{M}$ A기체의 몰수는 $\frac{a}{M}$ 물이다. 같은 온도, 같은 압력, 같은 부 피 속에는 같은 몰수가 들어 있으므로 B기체의 몰수는
		$\frac{a}{M}$ 몰이다. 따라서 $\frac{a}{M}$ 몰의 질량이 b 이므로 분자량은 1몰
		의 질량이므로 $\frac{bM}{a}$ 이다.
51 PAGE 35번 문제 수정	35. 포도당(C ₆ H ₁₂ O ₅) 18,000g에 포함되어 있는 포도 당 분자의 개수는?	35. 포도당(C ₆ H ₁₂ O ₆) 18,000g에 포함되어 있는 포도 당 분자의 개수는?
63 PAGE	08. ④	08. ②
8번 정답 수정		
73 PAGE	02. 클로로벤젠(A) 226g과 클로랄(B) 157g을 사용하	02. 클로로벤젠(A) 226g과 클로랄(B) 157g을 사용하
2번 문제 수정	여 살충제DDT(C)를 얻었다. 이 반응에 대한 설명으로 옳지 않은 것은?(단, A, B, C의 몰질량은 각각 113g/mol, 147g/mol, 354g/mol로 한다.) 12년 지방직 7급	여 살충제 DDT(C) 177g을 얻었다. 이 반응에 대한 설명으로 옳지 않은 것은?(단, A, B, C의 몰질량은 각각 113g/mol, 147g/mol, 354g/mol로한다.)
73 PAGE 3번 문제 수정	03. 다음 반응식에 따라 A 3몰과 B 2몰이 생성되었다면 이 반응의 퍼센트 수율(%)은?	03. 다음 반응식에 따라 A 3몰과 B 2몰이 반응하여 C 4몰이 생성되었다면 이 반응의 퍼센트 수율 (%)은?
104 PAGE	뒷 부분 내용 첨부	뒷 부분 내용 첨부
표 수정		

Page 위치	전	후
115 PAGE 26번 문제 수정	〈보기〉 ¬. A의 원자번호는 20이다. ∟. 원자가전자 수와 홀전자 수는 같다. □. 바닥상태의 전자배치는 1s²2s²2p⁴3s²3p⁴ 이다. □시 ¬. 중성원자의 핵전하량이 +3.04×10⁻¹²C이며, 전자 1개의 전하량은 -1.6×10⁻¹²C이므로 전자 중성원 자의 핵전하량은 약 20개의 전하량과 같은 크기 이다. 그러므로 원자번호는 20이다. ∟. 원자가전자 수는 2개이며 홀전자 수는 0개이다. □. 중성원자A의 전자배치는 1s² 2s² 2p⁶ 3s² 3p⁶ 4s²이다.	〈보기〉 ¬. A의 원자번호는 19이다. ∟. 원자가전자 수와 홀전자 수는 같다. □. 바닥상태의 전자배치는 1s²2s²2p⁴3s²3p⁴0이다. □. 중성원자의 핵전하량이 +3.04×10⁻¹²C이며, 전자 1개의 전하량은 -1.6×10⁻¹²C이므로 전자 중성원자의 핵전하량은 약 19개의 전하량과 같은 크기이다. 그러므로 원자번호는 19이다. ∟. 원자가전자 수는 2개이며 홀전자 수는 0개이다. □. 중성원자의 전자배치는 1s² 2s² 2p² 3s² 3p² 4s² 이다.
179 PAGE 8번 문제 수정	08. 다음과 같은 성질을 갖고 있는 물건은?	08. 다음과 같은 성질을 갖고 있는 물질은?
181 PAGE 16번 해설 수정 	 ○ C에서는 수소 원자 간의 핵간 거리가 가까워 반발력이 크기 때문에 불안정하다. B에서 인력은 증가하고, 반발력은 감소하여 에너지가 최소가 되면서 원자 간의 결합이 형성된다. 원자의 공유 결합 반지름은 핵간 거리의 ½이므로 0.074 2 이다. H→H결합을 끊어 수소 원자 2mol을 만드는데 필요한 에너지는 435kJ이다. 공유결합 에너지는 두 원자가 결합을 형성하여 안정해지면서 방출하는 에너지를 말한다. ① N=N-O 	다음 다
19번 문항 수정	③ N-N≡O ④ N=O=N	① : $N = N - O$: ② $N = N = O$ ③ : $N - N = O$: ④ $N = O = N$
182 PAGE 23번 해설 추가		환성제도에서 s-성질백분율? ① BeF₂에서 Be의 혼성오비탈은 sp이다. ∴ s-성질백분율은 50% ② BF₃에서 B의 혼성오비탈은 sp²이다. ∴ s-성질백분율은 33.3% ③, ④에서 C의 혼성오비탈은 sp³이다. ∴ s-성질백분율은 25%
207 PAGE 13번 문항 수정	13. 다음 분자들의 모양을 전자쌍 반발 이론으로 설명할 때 모양이 다른 한 가지가 있다. 분자의 모양이 다를 것으로 예상되는 것은? 02년 서울시 9급 ① OF2 ② CO2 ③ BrF2 ④ CS2 ⑤ BeCl2	13. 다음 분자들의 모양을 전자쌍 반발 이론으로 설명할 때 모양이 다른 한 가지가 있다. 분자의 모양이 다를 것으로 예상되는 것은?

Page 위치	전	후				
218 PAGE	59. H ₂ CO(formaldehyde)에 있는 탄소 원자에 관한	59. H₂CO(formaldehyde)에 있는 탄소 원자에 관한				
59번 문항 수정	설명으로 옳은 것은? 08년 국가직 7급	설명으로 옳은 것은? 08년 국가직 7급				
	① sp^3 혼성 궤도를 갖고 있으며, C-O 결합 길이	① sp^3 혼성 궤도를 갖고 있으며, C-O 결합 길이				
	는 에탄올의 C−O 결합 길이보다 길고, ∠HCH	는 에탄올의 C−O 결합 길이보다 길고, ∠HCH				
	는 109.5°보다 약간 작다.	는 109.5°보다 약간 작다.				
	② sp ³ 혼성 궤도를 갖고 있으며, C-O 결합 길이	② sp ³ 혼성 궤도를 갖고 있으며, C-O 결합 길이				
	는 에탄올의 C-O 결합 길이보다 짧고, ∠HCH	는 에탄올의 C−O 결합 길이보다 짧고, ∠HCH				
	는 109.5°보다 약간 크다. ③ sp^2 혼성 궤도를 갖고 있으며, C-O 결합 길이	는 109.5°보다 약간 크다. ③ <i>sp</i> ² 혼성 궤도를 갖고 있으며, C-O 결합 길이				
	는 에탄올의 C-O 결합 길이보다 짧고, ∠HCH	 ◎ SP 온성 체모를 갖고 있으며, C=O 설립 실어 는 에탄올의 C=O 결합 길이보다 짧고, ∠HCH 				
	는 109.5°보다 약간 작다.	는 120.0°보다 약간 작다.				
	④ sp ² 혼성 궤도를 갖고 있으며, C-O 결합 길이	④ sp^2 혼성 궤도를 갖고 있으며, C-O 결합 길이				
	는 에탄올의 C-O 결합 길이보다 길고, ∠HCH	는 에탄올의 C-O 결합 길이보다 길고, ∠HCH				
	는 109.5°보다 약간 크다.	는 120.0°보다 약간 크다.				
230 PAGE	12. ①	12. ③				
12번 정답 수정	(2)	(2)				
239 PAGE 하단 내용 수정	(3) MA ₃ B ₃ 형	(3) MA ₃ B ₃ 형				
이런 네즘 구경	리간드 6개가 금속 양이온에 배위되며, 팔면체	리간드 6개가 금속 양이온에 배위되며, 팔면체				
	구조로 cis 형과 trans 형의 기하 이성질체가	구조로 cis 형과 trans 형의 부분입체 이성질				
245 DAGE	존재한다.	체가 존재한다.				
245 PAGE 8번 해설 수정	K₃[Co(CN)₅]착물에서 중심금속의 산화수는 +3이며, 중심 금속 Co³+의 전자배치는 [Ar]3o⁵이다. CN⁻는 강한 장 리간	K₃[Co(CN)₅]착물에서 중심금속의 산화수는 +3이며, 중심 금속 Co³+의 전자배치는 [Ar]3d⁵이다. CN⁻는 강한 장 리간				
	드이므로 저스핀의 전자배치를 갖는다.	드이므로 저스핀의 전자배치를 갖는다.				
246 PAGE	③ B는 [Co(NH ₃) ₆ Cl ₃]이며, 6개의 리간드가 모두	③ B는 [Co(NH ₃) ₆]Cl ₃ 이며, 6개의 리간드가 모두				
14번 문항 수정	동일하므로 착이온의 쌍극자 모멘트는 0이다.	동일하므로 착이온의 쌍극자 모멘트는 0이다.				
282 PAGE 14번 문항 수정	14. 폴리에틸렌을 제조할 때 사용되는 가장 보편적	14. 폴리에틸렌을 제조할 때 사용되는 가장 보편적				
172 26 16	인 단위체는? 10년 지방직 9급	인 단위체는? 10년 지방직 9급				
	① CH ₂ =CH(C ₆ H ₅)	① CH ₂ =CH(C ₆ H ₅)				
	② CH ₃ CH ₂ OCH ₂ CH ₃ ③ CH ₃ CH ₂ CH ₂ OH	② CH ₂ =CHCl ③ CH ₂ =CH ₂				
	4 CH ₃ CH ₂ CH ₂ CH ₃	④ CH ₂ =CH(CN)				
328 PAGE	A. 톨루엔 B. 나프탈렌	A. 톨루엔 B. 나프탈렌				
3번 그림, 해설,	CH ₃	CH ₃				
정답 수정						
	C. 안트라센 D. <i>m</i> -크실렌	C. 안트라센 D. <i>m</i> -크실렌				
	CH ₃	CH ₃				
		CH ₃				
	[해설] 1) 톨루엔 : 축쇄 치환 1개와 핵 치환 3개	해설 1) 톨루엔 : 측쇄 치환 1개와 핵 치환 3개				
	2) 나프탈렌 : α, β의 2가지 이성질체	2) 나프탈렌 : α, β의 2가지 이성질체				
	3) 안트라센 : $lpha$, eta , γ 의 3가지 이성질체	3) 안트라센 : $lpha$, eta , γ 의 3가지 이성질체				

Page 위치	<u>전</u>	후				
	4) 크실렌 : 4가지 이성질체가 가능	4) 크실렌 : 4가지 이성질체가 가능				
	03. ①	03. ④				
332 PAGE	25. 에탄올을 산화시킬 때 생성되는 물질은?	25. 메탄올을 산화시킬 때 생성되는 물질은?				
25번 문제 수정	97년 국가직 9급	97년 국가직 9급				
	① 에틸렌 ② 아세톤	① 에틸렌 ② 아세톤				
	③ 포름알데히드 ④ 디메틸에테르	③ 포름알데히드 ④ 디메틸에테르				
332 PAGE	30. 아세트알데히드로부터 얻을 수 없는 제품은?	30. 아세트알데히드로부터 얻을 수 없는 제품은?				
30번 문제 수정	97년 서울시 9급	97년 서울시 9급				
	① 메탄올 ② 아세트산	① 에탄올 ② 아세트산				
	③ 아세트산에틸 ④ 글리세린	③ 아세트산에틸 ④ 글리세린				
352 PAGE	23. 4 24. 4 25. 1 26. 1 27. 5	23. 3 24. 1 25. 3 26. 2 27. 3				
정답 수정						
353 PAGE	28. ③ 29. ① 30. ②	28. ① 29. ② 30. ①				
정답 수정						
426 PAGE	기존 그림 없음					
19번 그림 삽입						
정답 수정	19. ②	Q CI				
		■ Na ⁺				
		19. ①				
426 PAGE	23. ②	23. ⑤				
23번 정답 수정						
452 PAGE	·해설 소수성 콜로이드에는 졸과 에멀션 등이 해당된다.	협절 친수성 콜로이드에는 졸과 에멀션 등이 해당된다.				
21번 해설 수정						
453 PAGE 30번 문항&		30. 1M 소금물의 삼투압은 실온에서 약 몇 atm인				
해설 수정	가? 제27회 변리사	가? 제27회 변리사				
에글 구6	① 1 ② 5.6	① 1 ② 5.6				
	③ 11.2 ④ 22.4	3 11.2 4 22.4				
	§ 48.9	\$ 44.8				
	해설 삼투압(π)= CRT 를 이용하여 계산하면 48.9기압이다. π = CRT	참절 삼투압(π)= CRT를 이용하여 계산하면 44.8기압이다.				
	N = CILI	$\pi = CRT$				
	$=1M \times 2 \times 0.082 \times (273 + 25^{\circ}C)$	= $2 \text{mol/L} \times 0.082 \text{(L atm/mol K)} \times 273 \text{K}$				
	=1M×2×0,082×(273+25°C) =48.9	= 2 mol/L \times 0.082(L atm/mol K) \times 273K				
	=48.9 소금(NaCl)이 물에 녹으면 Na ⁺ 와 Cl ⁻ 로 이온화되므	= $2 \text{mol/L} \times 0.082 \text{(L atm/mol K)} \times 273 \text{K}$ = $44.772 \text{ atm} = 9 44.8 \text{ atm}$				
	=48.9	= 2 mol/L \times 0,082(L atm/mol K) \times 273K				
482 PAGE	=48.9 소금(NaCl)이 물에 녹으면 Na ⁺ 와 Cl ⁻ 로 이온화되므	= $2 \text{mol/L} \times 0.082 \text{(L atm/mol K)} \times 273 \text{K}$ = $44.772 \text{ atm} = 9 44.8 \text{ atm}$				
482 PAGE 6번 정답 수정	=48.9 소금(NaCl)이 물에 녹으면 Na ⁺ 와 C「로 이온화되므 로 몰농도는 2몰/ℓ가 된다.	= 2mol/L × 0.082(L atm/mol K) × 273K = 44.772 atm = 약 44.8 atm = 44.8				

Page 위치	전	후
490 PAGE	26. 다음은 298K에서 황의 연소에 대한 반응식이다.	26. 다음은 298K에서 황의 연소에 대한 반응식이다.
26번 지문, 해설 수정	$ 2S(s) + 3O_2(g) \rightarrow 2SO_3(g) \qquad \triangle H^\circ = -800 \text{kJ/mol} \\ 2SO_3(g) \rightarrow 2SO_2(s) + O_2(g) \qquad \triangle H^\circ = -200 \text{kJ/mol} $	2S(s)+3O ₂ (g) \rightarrow 2SO ₃ (g) $\triangle H^{\circ}$ =-800kJ/mol 2SO ₃ (g) \rightarrow 2SO ₂ (s)+O ₂ (g) $\triangle H^{\circ}$ =200kJ/mol
	이 자료를 이용하여 S(s)+O ₂ (g)→SO ₂ (g) 반응의 △ H^o [kJ/mol]를 구하면? 14년 국가직 7급	이 자료를 이용하여 S(s)+O ₂ (g)→SO ₂ (g) 반응의 △ H^o [kJ/mol]를 구하면? 14년 국가직 7급
	작어진 반응식은 2S(s)+3O ₂ (g)→2SO ₃ (g) △H°=-800kJ/mol ··· ① 2SO ₃ (g)→2SO ₂ (s)+O ₂ (g) △H°=-200kJ/mol ··· ② S(s)+O ₂ (g)→SO ₂ (g) 반응의 △H°[kJ/mol]는 ①+② 2 - 800+200 2 = -300[kJ/mol]	작어진 반응식은 2S(s)+3O ₂ (g)→2SO ₃ (g) ΔH^o =-800kJ/mol ··· ① 2SO ₃ (g)→2SO ₂ (s)+O ₂ (g) ΔH^o =200kJ/mol ··· ② S(s)+O ₂ (g)→SO ₂ (g) 반응의 ΔH^o [kJ/mol]는 $\frac{①+②}{2} = \frac{-800+200}{2} = -300$ [kJ/mol]
514 PAGE 28번 보기, 해설 수정	《보기》 ㄱ. 계의 엔탈피는 감소한다. ㄴ. $\Delta S_{^{7}}<0$, $\Delta S_{^{7}}>0$ 이다. ㄷ. 0 °보다 낮은 온도에서 $\Delta H_{^{7}}>T\Delta S_{^{7}}$ 이 다.	《보기》
	 □ 액체가 고체로 상태 변화하면서 응고열을 방출하므로 계의 엔탈피는 감소한다. □ 액체가 고체로 상태 변화하면서 분자 배열이 규칙적으로 되므로 계의 엔트로피는 감소하고, 주위로 응고열을 방출하므로 주위의 엔트로피는 증가한다. □ 0℃보다 낮은 온도에서 물이 어는 과정은 자발적이므로 △G<0이다. 따라서 0℃보다 낮은 온도에서 △H_게 > T△S_계이다. 	 □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □
533 PAGE 4번 보기 수정	$H_2O(g) + CO(g) \Rightarrow H_2(g) + CO(g) + 10kcal$	$H_2O(g) + CO(g) \rightleftharpoons H_2(g) + CO_2(g) + 10$ kcal
535 PAGE 14번 해설 수정	로샤틀리에 원리에 의해 가역 반응이 평형 상태에 있을 때 농도, 압력, 온도 등을 변화시키면 그 변화를 감소시키는 방향으로 평형이 이동한다. 반응물인 ∪를 첨가하면 반응물을 소모시키는 정반응 방향으로 평형이 이동한다. 반응물인 HF(g)가 소모되면 HF(g)가 증가하는 방향인 역반응방향으로 평형이 이동한다. Ar(g)와 같이 반응에 영향을 주지 않는 비활성 기체를 첨가하면 평형이 이동하지 않는다. 발열반응이므로 반응계의 온도를 낮추면 온도가 증가하는 정반응 방향으로 평형이 이동한다.	● 로샤틀리에 원리에 의해 가역 반응이 평형 상태에 있을 때 농도, 압력, 온도 등을 변화시키면 그 변화를 감소시키는 방향으로 평형이 이동한다. 반응물인 UO₂를 첨가하면 반응물을 소모시키는 정반응 방향으로 평형이 이동한다. 반응물인 HF(g)가 소모되면 HF(g)가 증가하는 방향인 역반응 방향으로 평형이 이동한다. Ar(g)와 같이 반응에 영향을 주지 않는 비활성 기체를 첨가하면 평형이 이동하지 않는다. 발열반응이므로 반응계의 온도를 낮추면 온도가 증가하는 정반응 방향으로 평형이 이동한다.
537 PAGE 20번 보기 수정	① 평형에서 C의 압력은 1.04 atm이다. ① 생성되는 C(g)를 제거하면 정반응이 우세하다. ② 같은 온도에서 Ca, C(s)의 양을 변화시키면 평형상수 값도 변화한다.	 ③ 평형에서 CO₂(g)의 압력은 1.04 atm이다. ⑥ 생성되는 CO₂(g)를 제거하면 정반응이 우세하다. ⑥ 같은 온도에서 Ca, C(s)의 양을 변화시키면 평형상수 값도 변화한다.

Done Olal	T-J	=
Page 위치	전	후
577 PAGE	해설 당량점에 도달하는 적정액의 부피는	[해설] 당량점에 도달하는 적정액의 부피는
36번 해설 수정	$0.5 \times 0.1M \times 100ml = 0.1M \times x$ $x = 50ml$	$0.1M \times 100ml = 0.1 \times V$
	x - 50m	V=100ml
		이때 당량점에 도달하는 부피의 절반을 가한 경우 반응에
		의해 생성된 [CH3COO]와 반응하지 않은 [CH3COOH]가 같은 양 존재하므로
		$PH = pka + \log \frac{[CH_3COO^-]}{[CH_3COOH]} = pka \ 0 \Box .$
		_
		이러한 반당량점에서 PH변화가 가장 작다.
611 PAGE	2) 산화 전국(+국) : 음이온인 B ⁻ 과 H ₂ O 중 산화가 잘	2) 산화 전극(+극) : 음이온인 B ⁻ 과 H ₂ O 중 산화가 잘
내용 수정	되는 것이 전자를 잃고 산화된다.	되는 것이 전자를 잃고 산화된다.
	• B ⁻ 이 SO ₄ ²⁻ , CO ₃ ²⁻ , NO ³⁻ , PO ₄ ³⁻ , F ⁻ 과 같이 전자	• B ⁻ 이 SO ₄ ²⁻ , CO ₃ ²⁻ , NO ₃ ⁻ , PO ₄ ³⁻ , F ⁻ 과 같이 전자
	친화도가 큰 금속의 음이온이나 다전자 이온인 경우.	친화도가 큰 금속의 음이온이나 다전자 이온인 경우.
	이들 이온은 물보다 산화되기 어려우므로 H2O이 전	이들 이온은 물보다 산화되기 어려우므로 H2O이 전
	지를 잃고 산화되어 산소 기체가 방출된다. 이때 물	자를 잃고 산화되어 산소 기체가 방출된다. 이때 물
	이 분해되어 산소 기체가 발생하고, H ⁺ 이 생성되므	이 분해되어 산소 기체가 발생하고, H ⁺ 이 생성되므
	로 수용 액의 pH는 감소한다.	로 수용액의 pH는 감소한다.
618 PAGE	14. 다음의 물질 K ₂ Cr ₂ O ₄ 의 Cr의 산화수는 얼마인	14. 다음의 물질 K ₂ Cr ₂ O ₇ 의 Cr의 산화수는 얼마인
18번 문제 수정	가?	가?
621 PAGE	© 298K에서 E=1.1V-log	$0.0592V_{log}[Cu^{2+}]$
32번 보기 수정		© 298K에서 E=1.1V $-\frac{0.0592V}{2}\log\frac{[\mathit{Cu}^{2+}]}{[\mathit{Zn}^{2+}]}$
642 PAGE	16. @	16. ②
16번 정답 수정		

Educational Producer For Your Success

[104 PAGE 표] 내용첨부(수정 전)

원자	전자 껍질	K		L	M			N	전자 배치	홀전자
번호	오비탈	1s	2s	2p	3s	3p	3d	4s		수
1	Н								$1s^1$	1
2	Не								$1s^2$	0
3	Li								$1s^2 \ 2s^1$	1
4	Ве								$1s^2 2s^2$	0
5	В								$1s^2 \ 2s^2 \ 2p^1$	1
6	С								$1s^2 \ 2s^2 \ 2p^2$	2
7	N								$1s^2 \ 2s^2 \ 2p^3$	3
8	0								$1s^2 \ 2s^2 \ 2p^4$	2
9	F								$1s^2 \ 2s^2 \ 2p^5$	1
10	Ne								$1s^2 \ 2s^2 \ 2p^6$	0
11	Na								$1s^2 \ 2s^2 \ 2p^6 \ 3s^1$	1
12	Mg								$1s^2 \ 2s^2 \ 2p^6 \ 3s^2$	0
13	Al								$1s^2 \ 2s^2 \ 2p^6 \ 3s^2 \ 3p^1$	1
14	Si								$1s^2 \ 2s^2 \ 2p^6 \ 3s^2 \ 3p^2$	2
15	Р								$1s^2 \ 2s^2 \ 2p^6 \ 3s^2 \ 3p^3$	3
16	S								$1s^2 \ 2s^2 \ 2p^6 \ 3s^2 \ 3p^4$	2
17	Cl								$1s^2 \ 2s^2 \ 2p^6 \ 3s^2 \ 3p^5$	1
18	Ar								$1s^2 \ 2s^2 \ 2p^6 \ 3s^2 \ 3p^6$	0
19	K								$1s^2\ 2s^2\ 2p^6\ 3s^2\ 3p^6\ 4s^1$	1
20	Ca								$1s^2 \ 2s^2 \ 2p^6 \ 3s^2 \ 3p^6 \ 4s^2$	0

Educational Producer For Your Success

[104 PAGE 표] 내용첨부(수정 후)

원자	전자 껍질	K	L		M		N	전자 배치	홀전자	
번호	오비탈	1s	2s	2p	3s	3p	3d	4s		수
1	Н								$1s^1$	1
2	Не								$1s^2$	0
3	Li								$1s^2 \ 2s^1$	1
4	Ве								$1s^2 2s^2$	0
5	В								$1s^2 \ 2s^2 \ 2p^1$	1
6	C								$1s^2 \ 2s^2 \ 2p^2$	2
7	N								$1s^2 \ 2s^2 \ 2p^3$	3
8	0								$1s^2 \ 2s^2 \ 2p^4$	2
9	F								$1s^2 \ 2s^2 \ 2p^5$	1
10	Ne								$1s^2 \ 2s^2 \ 2p^6$	0
11	Na								$1s^2 \ 2s^2 \ 2p^6 \ 3s^1$	1
12	Mg								$1s^2 \ 2s^2 \ 2p^6 \ 3s^2$	0
13	Al								$1s^2 \ 2s^2 \ 2p^6 \ 3s^2 \ 3p^1$	1
14	Si								$1s^2 \ 2s^2 \ 2p^6 \ 3s^2 \ 3p^2$	2
15	Р								$1s^2 \ 2s^2 \ 2p^6 \ 3s^2 \ 3p^3$	3
16	S								$1s^2 \ 2s^2 \ 2p^6 \ 3s^2 \ 3p^4$	2
17	Cl								$1s^2 \ 2s^2 \ 2p^6 \ 3s^2 \ 3p^5$	1
18	Ar								$1s^2 \ 2s^2 \ 2p^6 \ 3s^2 \ 3p^6$	0
19	K								$1s^2\ 2s^2\ 2p^6\ 3s^2\ 3p^6\ 4s^1$	1
20	Ca								$1s^2 \ 2s^2 \ 2p^6 \ 3s^2 \ 3p^6 \ 4s^2$	0